Two problems of mixed type for the damped wave equation
نویسندگان
چکیده
منابع مشابه
Finding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach
In this paper, we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset of 3-dimensional space. The place of sensor is modeled by a subdomain of this region of a given measure. By using an approach based on the embedding process, first, the system is formulated in variational form;...
متن کاملEigenvalue Asymptotics, Inverse Problems and a Trace Formula for the Linear Damped Wave Equation
We determine the general form of the asymptotics for Dirichlet eigenvalues of the one–dimensional linear damped wave operator. As a consequence, we obtain that given a spectrum corresponding to a constant damping term this determines the damping term in a unique fashion. We also derive a trace formula for this problem.
متن کاملInstability results for the damped wave equation in unbounded domains
We extend some previous results for the damped wave equation in bounded domains in R to the unbounded case. In particular, we show that if the damping term is of the form αa with bounded a taking on negative values on a set of positive measure, then there will always exist unbounded solutions for sufficiently large positive α. In order to prove these results, we generalize some existing results...
متن کاملMixed Spectral and Pseudospectral Methods for a Nonlinear Strongly Damped Wave Equation in an Exterior Domain
The aim of this paper is to develop the mixed spectral and pseudospectral methods for nonlinear problems outside a disc, using Fourier and generalized Laguerre functions. As an example, we consider a nonlinear strongly damped wave equation. The mixed spectral and pseudospectral schemes are proposed. The convergence is proved. Numerical results demonstrate the efficiency of this approach. AMS su...
متن کاملDamped Wave Equation with a Critical Nonlinearity
We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { ∂2 t u+ ∂tu−∆u+ λu 2 n = 0, x ∈ Rn, t > 0, u(0, x) = εu0 (x) , ∂tu(0, x) = εu1 (x) , x ∈ Rn, where ε > 0, and space dimensions n = 1, 2, 3. Assume that the initial data u0 ∈ H ∩H, u1 ∈ Hδ−1,0 ∩H−1,δ, where δ > n 2 , weighted Sobolev spaces are H = { φ ∈ L; ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1948
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/26753